jueves, 31 de julio de 2008

TRABAJO COMUNICACIONES



El cable de par trenzado es uno de los más antiguos, surgió en 1985. Este tipo de cable está formado por hilos, que son de cobre o de aluminio y estos hilos están trenzados entre sí para que las propiedades eléctricas estén estables y también, para evitar las interferencias que pueden provocar los hilos cercanos.

Este tipo de cable se utiliza cuando: La LAN tiene un presupuesto limitado o se va a hacer una instalación sencilla, con conexiones simples.

Este tipo de cable NO se utiliza cuando: Se necesita un gran nivel de seguridad en la LAN o la velocidad de transmisión es alta y son redes de gran distancia.

Este tipo de cable, está formado por el conductor interno el cual está aislado por una capa de polietileno coloreado. Debajo de este aislante existe otra capa de aislante de polietileno la cual evita la corrosión del cable debido a que tiene una sustancia antioxidante.

Normalmente este cable se utiliza por pares o grupos de pares, no por unidades, conocido como cable multipar. Para mejorar la resistencia del grupo se trenzan los cables del multipar.

Los colores del aislante están estandarizados, y son los siguientes: Naranja/ Blanco-Naranja, Verde/ Blanco-Verde, Azul/ Blanco-Azul, Marrón/Blanco-Marrón.

Cuando ya están fabricados los cables unitariamente y aislados, se trenzan según el color que tenga cada uno. Los pares que se van formando se unen y forman subgrupos, estos se unen en grupos, los grupos dan lugar a superunidades, y la unión de superunidades forma el cable.

Tipos de conexionado

Los cables UTP forman los segmentos de Ethernet y

pueden ser cables rectos o cables cruzados dependiendo de su utilización.

1.- Cable recto (pin a pin)

Estos cables conectan un concentrador a un nodo de red (Hub, Nodo). Todos los pares de colores están conectados en las mismas posiciones en ambos extremos. La razón es que el concentrador es el que realiza el cruce de la señal. Para hacer un cable cruzado existen 2 ramas: 568B, 568A. Una se utilizará en uno de los extremos del cable y la otra norma en el otro extremo.

2.- Cable cruzado (cross-over)

Este tipo de cable se utiliza cuando se conectan elementos del mismo tipo, dos enrutadores, dos concentradores… También se utiliza cuando conectamos 2 ordenadores directamente, sin que haya enrutadores o algún elemento a mayores.

Para saber qué tipo de cable se está utilizando (rect

o o cruzado) solo hay una manera de hacerlo, y es utilizando un instrumento adecuado de medida.

Categorías:

Hay varias categorías dentro de los cables UTP, las cuales se diferencian en su atenuación, impedancia y capacidad de línea:

Categoría 1: (cable UTP tradicional) Alcanza como máximo una velocidad de 100 Kbps. Se utiliza en redes telefónicas.

Categoría 2: Alcanza una velocidad de transimisión de 4 Mbps . Tiene cuatro pares trenzados de hilo de cobre.

Categoría 3: 16 Mbps puede alcanzar como máximo en la transmisión. Tiene un ancho de banda de 16 MHz.

Categoría 4: Velocidad de transmisión de hasta 20 Mbps, con un ancho de banda de 20 MHz.

Categoría 5: Velocidad de hasta 100 Mbps, con un ancho de banda de 100 MHz. Se utiliza en las comunicaciones de tipo LAN. La atenuación de este cable depende de la velocidad.

Velocidad de 4 Mbps -- Atenuación de 13 dB

Velocidad de 10 Mbps -- Atenuació

n de 20 dB

Velocidad de 16 Mbps -- Atenuación de 25 dB

Velocidad de 100 Mbps -- Atenuación de 67 dB

Categoría 5e: Igual que la anterior pero mejorada, ya que produce menos atenuación. Puede alcanzar velocidad de transmision de 1Gbs con electronica especial.

Categoría 6: Tiene un ancho de banda

de 250 MHz. Puede alcanzar velocidad de transmision de 1Gbs

Categoría 6A: Tiene un ancho de banda de 500 MHz. Puede alcanzar velocidad de transmision de 10Gbs

Categoría 7: Esta categoría esta aprobada para los elementos que conforman la clase F en el estandar internacional ISO 11801. Tiene un ancho de banda de 600 MHz. Puede alcanzar velocidades de transmision superiores a 10Gbs

3.- Con pantalla global (FTP) Tambien llamado FUTP : Su precio es intermedio entre el del UTP y el del STP. En este tipo de cable sus pares aunque no están apantallados, tienen una pantalla global (formada por una cinta de al

uminio) que provoca una mejora en la protección contra interferencias externas.

Se suele utilizar para aplicaciones que se van a someter a una elevada interferencia electromagnética externa, ya que este cable tiene un gran a

islamiento de la señal.

Una de las ventajas que tiene el FTP es que puede ser configurado en topologías diferentes, como son la de estrella y la de bus, además es de fácil instalación.

También tiene algunas desventajas como son las siguientes: muestra gran sensibilidad al ruido y las grandes velocidades de transmisión no las soporta.

CABLE COAXIAL



El cable coaxial es un cable eléctrico formado por dos conductores concéntricos, uno central o núcleo, formado por un hilo sólido o trenzado de cobre (llamado positivo o vivo), y uno exterior en forma de tubo o vaina, y formado por una malla trenzada de cobre o aluminio o bien por un tubo, en caso de cables semirrígidos. Este último produce un efecto de blindaje y además sirve como retorno de las corrientes. El primero está separado del segundo por una capa aislante llamada dieléctrico. De la calidad del dieléctrico depen

derá principalmente la calidad del cable. Y todo el conjunto puede estar protegido por una cubierta aislante.


Hacia los años 80 el cable coaxial fue el más usado, pero era muy fácil intervenir la línea y obtener información de los usuarios sin su consentimiento y se sustituyó por la fibra óptica en distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior, lo que justifica su mayor costo y su instalaci

ón más delicada.

Tipos

Existen múltiples tipos de cable coaxial, cada uno con un diámetro e impedancia diferentes. El cable coaxial no es habitualmente afectado por interferencias externas, y es capaz de lograr altas velocidades de transmisión en largas distancias. Por esa razón, se utiliza en redes de comunicación de banda ancha (cable de televisi

ón) y cables de banda base (Ethernet).


El tipo de cable que se debe utilizar depende de la ubicación del cable. Los cables coaxiales pueden ser de dos tipos:

El cloruro de polivinilo (PVC)

Es un tipo de plástico utilizado para construir el ai

slante y la clavija del cable en la mayoría de los tipos de cable coaxial. El cable coaxial de PVC es flexible y se puede instalar fácilmente en cualquier lugar. Sin embargo, cuando se quema, desprende gases tóxicos

Plenum

El plenum contiene materiales especiales en su aislamiento y en una clavija del cable. Estos materiales son resistentes al fuego y producen una mínima cantidad de humo; esto reduce los humos tóxicos. Sin embargo, el cableado plenum es más caro y menos flexible que el PVC.


FIBRA OPTICA



La fibra óptica es un conductor de ondas en forma de filamento, generalmente de vidrio, aunque también puede ser de materiales plásticos. La fibra óptica es capaz de dirigir la luz a lo largo de su longitud usando la reflexión total interna. Normalmente la luz es emitida por un láser o un LED.

Las fibras son ampliamente utilizadas en telecomunicaciones, ya que permiten enviar gran cantidad de datos a gran velocidad, mayor que las comunicaciones de radio y cable. También se utilizan para redes locales. Son el medio de transmisión inmune a las interferencias por excelencia. Tienen un costo elevado.

Tipos

Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.

Fibra multimodo

Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.

Su distancia máxima es de 2 km y usan diodos láser de baja intensidad.

El núcleo de una fibra multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de una fibra multimodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de menor precisión.

Dependiendo el tipo de índice de refracción del núcleo, tenemos dos tipos de fibra multimodo:

  • Índice escalonado: en este tipo de fibra, el núcleo tiene un índice de refracción constante en toda la sección cilíndrica, tiene alta dispersión modal.
  • Índice gradual: mientras en este tipo, el índice de refracción no es constante, tiene menor dispersión modal y el núcleo se constituye de distintos materiales.

Fibra monomodo

Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 100 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).



GUIA DE ONDA

En electromagnetismo y en telecomunicación, una guía de onda es cualquier estructura física que guía ondas electromagnéticas.

Dependiendo de la frecuencia, se pueden construir con materiales conductores o dieléctricos. Generalmente, cuanto más baja es la frecuencia, mayor es la guía de onda. Por ejemplo, el espacio entre la superficie terrestre y la ionosfera la atmósfera actúa como una guía de onda. Las dimensiones limitadas de la Tierra provocan que esta guía de onda actúe como cavidad resonante para las ondas electromagnéticas en la banda ELF. (véase Resonancia Schumann). Las guías de onda también puede tener dimensiones de pocos centímetros. Un ejemplo puede ser aquellas utilizadas por los satélites de EHF y por los radares.

MICROONDAS TERRESTRES

Un radioenlace terrestre o microondas terrestre provee conectividad entre dos sitios (estaciones terrenas) en línea de vista (Line-of-Sight, LOS) usando equipo de radio con frecuencias de portadora por encima de 1 GHz. La forma de onda emitida puede ser analógica (convencionalmente en FM) o digital.

Las principales aplicaciones de un sistema de microondas terrestre son las siguientes:

  • Telefonía básica (canales telefónicos)
  • Datos
  • Telegrafo/Telex/Facsímile
  • Canales de Televisión.
  • Video
  • Telefonía Celular (entre troncales)

ESPECTRO DE RADIO FRECUENCIA

El término espectro de radiofrecuencia, o RF, se aplica a la porción del espectro electromagnético en el que se pueden generar ondas electromagnéticas aplicando corriente alterna a una antena.

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre éste, como la longitud de onda, la frecuencia y la intensidad de la radiación.

El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo (véase Cosmología física) aunque formalmente el espectro electromagnético es infinito y continuo.

LASER INFRAROJO

Las transmisiones de laser de infrarrojo directo envuelven las mismas técnicas empleadas en la transmisión por fibra óptica, excepto que el medio en este caso es el aire libre. El láser tiene un alcance de hasta 10 millas, aunque casi todas las aplicaciones en la actualidad se realizan a distancias menores de una milla. Típicamente, las transmisiones en infrarrojo son utilizadas donde la instalación de cable no es factible entre ambos sitios a conectar. Las velocidades típicas de transmisión a esas distancias son 1.5 Mbps. La ventaja del laser infrarrojo es que no es necesario solicitar permiso ante las autoridades para utilizar esta tecnología. Debe de tenerse mucho cuidado, en la instalación ya que los haces de luz pueden dañar al ojo humano. Por lo que se requiere un lugar adecuado para la instalación del equipo. Ambos sitios deben de tener linea de vista.

Para distancias cortas las transmisiones vía laser/infrarojo son una excelente opción. Lo cual resulta en poco tiempo mas economico que el empleo de estaciones terrenas de microondas. Se utiliza bastante para conectar LANs localizadas en diferentes edificios. ( ver figura)


SATELITAL

En las comunicaciones por satélite, las ondas electromagnéticas se transmiten gracias a la presencia en el espacio de satélites artificiales situados en órbita alrededor de la Tierra.

Tipos de satélites de comunicaciones

El ACRIMSat

Un satélite actúa básicamente como un repetidor situado en el espacio: recibe las señales enviadas desde la estación terrestre y las reemite a otro satélite o de vuelta a los receptores terrestres. En realidad hay dos tipos de satélites de comunicaciones:

  • Satélites pasivos. Se limitan a reflejar la señal recibida sin llevar a cabo ningúna otra tarea.
  • Satélites activos.